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Lately researchers have been increasingly interested in a recently discovered phenome- 
non: the ability of a source of disturbance that is moving along the surface of a fluid to 
generate an outgoing soliton-like wave that moves ahead of the source in the same direction 
as the source [1-6]. Analysis of soliton generation is quite a difficult prohlem, since it 
requires the use of fairly complex mathematical models which take into account both the non- 
linearity and the dispersion of waves (it is the peculiar balance of these effects that con- 
stitute the mechanism of the phenomenon). Therefore numerical methods predominate among 
the methods used to study this process. 

Another factor complicating the problem is the large number of governing parameters: 
in addition to the horizontal coordinate x (the motion is assumed to be plane-parallel and 
to depend on depth only on the average) and time t, there is the acceleration of gravity g, 
the density p, and depth h = const of the fluid, as well as those parameters characterizing 
the source of the disturbance. As the latter, we consider the region of surface pressure 
p(x, t), which is conveniently written in the form [1-6] 

pro cos ~ (~ /2 ) ,  ] ~ I ~< t,  
t' (~:. t) = po (~) = O, I ~ I > 1 

(~ = (x - ct)/s is the local coordinate in a moving frame of reference that is tied to the 
source of disturbance). Thus, the region of pressure is characterized by its rate of motion 
c = const, its maximum deviation from zero Pm = P0 (0) (equal to max P0(g) for Pm > 0), and 
its effective length s = f/Pm, where f is the total pressure on the surface of the fluid 
(henceforth used as the governing parameter in place of Pm): 

! = j p (*  0 dz = 1 ~ po (~) d~. 
- - : , o  ~ 1  

Transforming to dimensionless variables by scaling all quantities by the term p~gYh 6 with 
the appropriate exponents 6, 7, and 6 and keeping the previous notation, we obtain p = g = 
h = 1 in the new variables; all unknowns will be functions of c, s and f (in addition to 
depending on x and t). 

Due to the three-dimensionality of the governing parameter space, numerical analysis 
of the process of soliton generation is very laborious, and at present is far from complete. 
The available information on the question of the dependence of this process on external con- 
ditions [1-6] can be significantly augmented: the present paper is devoted to this goal. 

i. Mathematical Formulation and Computational Algorithm. The process of soliton gen- 
eration was modeled within the framework of the generalized Boussinesq approximation [i, 3]. 
The unknown functions are the free surface elevation N(x, t) and the horizontal component 
of the velocity averaged over depth u(x, t). Their evolution is obtained from the equations 

~]t + [(t + q)u]~ = O, u t ~ uu~  ~ q~ -~ p~  = ( ~ / 3 ) u t x  x ( 1 . 1 )  

(the letter subscript denotes partial differentiation with respect to the corresponding vari- 
able), with initial conditions 

= q o ( X ) ,  U = Uo(X) a t  t = O. 
( 1 . 2 )  
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The model is obtained with the following assumptions concerning the characteristic val- 
ues of the amplitude ~ and the length I of the wave being studied [i, 3]: 

<< 1, ~ >> t ,  ~ = O( l ) .  ( ] . . 3 )  

For ease of construction of the difference scheme, the system of equations (i.i), (1.2) 
is conveniently rewritten in the form 

qt + q~ = O, wt + s:~ = O; ( 1 . 4 )  

q =qo(X), w=u~o(x) at_ t = O ,  ( 1 . 5 )  

where 

q(x ,  t) = (1 + ~ ) u ;  ( 1 . 6 )  

w(x,  t) = u - -  ( t / 3 ) u ~ ;  ( 1 . 7 )  

s(x ,  t) = ( i / 2 ) u  2 + N  + p ,  ( 1 . 8 )  

and the initial function w0(x) is determined in terms of u0(x) in accordance with (1.7). 
Initially the fluid is at rest, i.e., 

~o(Z) = - p ( x ,  0), Wo(X) --= 0 (~=uo(x) ~ 0). 

To carry out the calculations, it is necessary to limit the range of x (-~z ~ x ~ ~2) 
with the statement of appropriate boundary conditions. In this case, the lateral boundaries 
are considered to be impermeable: 

u = 0  f o r  x = - - l l ,  x = 12; ( 1 . 9 )  

q = 0 f o r  x = - - I1 ,  x - -  12. ( 1 . 1 0 )  

Conditions (1.9), (i. I0) can be treated as the preservation of the initial, quiescent state 
of the fluid far from the source of disturbance, which holds in view of the finite wave 
propagation velocity. This is valid only up to the moment of time determined by the se- 
lected values of s and s (here s = 2, ~2 = 178). 

The numerical algorithm for solving problem (1.4)-(1.10) was constructed using finite 
differences. Discretization in time was done using the implicit Crank-Nicholson scheme 

A t  ~ + l , k  n A t  n At ~ + ~ , h  '~ , -~  q~, w ' ~ + ~  ~ + - ~  s.~ ~ s~ ~]n+l,M-i + 2-qx = :  q -- . : ~t' -- 

(At is the time step; the first superscript is the time step number, the second is the 
iteration number). An iterative process is needed at each time step because the scheme is 
implicit and because of the nonlinearity of (1.6) and (1.8). 

Spatial discretization of the variables is done on a mesh with spaced nodes, viz; mesh 

functions Di_i/2, si_i/2, pi_I/2(i = i, ..., M), wi(i = 1 ..... M - i), qi' ui(i = 0 ..... 

M) are used. Here, fv denotes f(x v) (xv = -s + vAx, Ax = (s + s is the step in x, and 
M is an integer). With such a distribution of mesh nodes, the only possible approximation 
of the first derivatives in terms of x are symmetric differences. The values of the func- 
tions themselves between nodes are of necessity determined by finite differences. For exam- 
ple 

The boundary conditions are satisfied exactly: at the ends of the interval [-~z, ~2], only 
the nodal functions q and u are distributed, their boundary values being prescribed accord- 
ing to (1.9) and (i. I0). 

Problem (1.7), (1.9) for establishing the velocity u in terms of the known function w 
is sufficiently simple that its finite difference implementation using the usual three-point 
approximation of the second derivatives does not cause difficulty. The difference scheme 
constructed is of second order accuracy in both independent variables; it is conservative 
due to the equation approximating the divergence, and being implicit, it has a large margin 
of stability. 
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Calculations were done on a mesh with parameters Ax = 0.2 and At = 0.1, which ensures 
reasonably high accuracy of the numerical solution to the problem. A further decrease by a 
factor of two of the mesh parameters resulted in no more than a 3% change in the wave drag 
r(t) in the norm which is the discrete analog to the norm of the space of continuous func- 
tions (the results of varying the mesh step size for fixed choice of parameters c, s and f 
can be found in [5, 6]). 

2. Computations; Results. Without touching on the question of the behavior of the 
function q(x, t) (the general wave pattern behaves as in [2-4]), we limit our examination to 
an important integral characteristic of the process: the wave drag r(t), defined by [i]: 

12 1 

t" o S o r ( t )  = p(x,t)T~ q(sc, t)dx= Po(~)-~ "~(~,t)d~., ~(~,t) 
--l~ - 1 

= n (~l + zt; t), 

The function r(t), doubtless of interest in itself as the horizontal component of the 
reaction force of the fluid to an exterior action, also carries in addition general informa- 
tion on the process of soliton generation. In particular, r(t) oscillates with the period 
of soliton generation, while by its amplitude one can judge the amplitude of the solitons 
being formed (the results of [1-6] indicate the approximate proportionality of these ampli- 
tudes). Below we will use only the orthonormal quantity r'(t) = r(t)/f while keeping the 
original notation (without the prime). 

The function r(t) has the characteristic form shown in Fig. 1 (computed for c = s = I, 
f = 0.2), and can be represented by 

! 

t [ r (T) dz, r ( t ) - - - - < r > + v ( t - - S T ) + r  o (t), <r> - -  l i m  -F 
0 

where <r> is the mean value of r(t); v(t) is a function that oscillates about zero with 

period T and amplitude a: v(t + T) = v(t); a = Vma x - Vmin; Vma x = maxv(t); Vmi n = minv(t). 
The phase shift &t is determined from the condition v(0) = Vmax, 0 S AT < T. The function 
r0(t) is introduced to describe the behavior of r(t) at early times: r0(t) + 0 for t ~ ~. 

Thus, for large t, r(t) is reasonably completely characterized by the following param- 
eters: the mean <r> and maximum rma x = <r> + Vma x values of the wave drag, the frequency 

= 2~/T, and the amplitude a of the oscillations of v(t), and the relative phase shift 
6T/T~ 

Some computational results for the most significant of the enumerated quantities are 
given below as functions of c, ~, and f. The following methods of parameter variation were 
considered: 

i) c = F, s = i, f = 0.2; 

2) c = F, s = F 2, f = 0.2 F4; 

3) c = i, s = F -2, f = 0.2; 

4) c = F, s = i, f = 0.15. 

Methods 1 and 3 evidently vary the velocity and the length of pressure region, respectively; 
2 varies the dimensional depth of the fluid h ~ F -2 while the other dimensional quantities 
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are held constant (because h is used in scaling, this leads to the indicated dependence of 
c, s and f on F). Method 4 is analogous to the first method; the computational results for 
this method are taken from [4] and introduced here for comparison. The parameter F in method 
3 has the sense of the Froude number in terms of the length of the pressure region (F = Fs = 

c/~s while in the other methods it is the Froude number in terms of the depth, equal to 
the dimensionless velocity (F = F h = c). 

The methods chosen for varying the governing parameters for any unknown b = b(c, s f) 
are placed in the corresponding function hi(F) (i = 1, 2, 3, 4), where bl(F) = b(F; i; 0.2), 
bi(F) = F-26b(F; Fi; 0.2 F4), b3(F) = b(l; F-2; 0.2), b4(F) = b(F; I; 0.15). The presence 

of the normalizing factor F -26 = s (6 is the exponent from the scaling multiplier p~gYh 6 
for the quantity b) in the second relation reflects the fact that in this case, the depth of 
the fluid is considered to be variable, and the scale of all parameters naturally is tied 
not to h, but to the dimensional length of the pressure region, which is considered to be 
unchanging. In Figs. 2-5, points 1-4 (joined by lines of clarity) correspond in number order 
to the functions bi(F) , where b is understood to mean any parameter characterizing the wave 
drag. 

Figure 2 shows the oscillation frequency e of the function v(t) or the frequency of 
soliton generation. The behavior of mi(F) is qualitatively different for different F h due 
to the velocity and the depth (i = 1 and 2). In the first case, the frequency is monotonic 
and dies off quite rapidly; in the second it grows to its maximum of ~max = 0.263 at F = 
1.34, after which it also rapidly drops to zero. Variation of the length of the interval 
over which the surface pressure is distributed leads to relatively less though still notice- 
able change in the frequency (line 3). Evidently the critical value is not the pressure 
distribution but the total force, which was constant: f = 0.2. For comparison, results 
from [4] are given, which varies the governing parameter using method 4 (analogous to method 
i) but with a smaller value of f. Accordingly, line 4 virtually duplicates 1 at a lower 
level. 

Figure 2 makes it possible to estimate the upper boundary of the interval for the value 
of F h at which soliton generation occurs. With increasing Fh, soliton formation comes to a 
halt because of the unbounded growth in the generation period, i.e., the decrease of the 
frequency to zero. Clearly the upper critical value of the Froude number F+ is in the inter- 
val [1.2; 1.3] for method 1 and in [1.8; 1.9] for method 2. The first of these intervals is 
in good agreement with the results of [2, 4], however, variation in fluid depth was not con- 
sidered in these works. Nevertheless, the approximate relation constructed in [2] 

F+ = i + p~/(O,7 + p~) (2.  ]_) 

can also be used to estimate F+ with variation in depth if in neglecting the weak dependence 
of e on s the choice of parameters c = F, Z = F 2, f = 0.2F 4 is considered equivalent to the 
choice c = F, s = i, f = 0.2 F 4. Then Pm = f and the critical Froude number is determined 
from 

F+ = 1 + 0,2F$/(0,7 + 0,2F$), 

which gives F+ ~ 1.71. That this value is somewhat at odds with the condition F+ e [1.8; 
1.9] isprobably caused by inadequate accuracy in (2.1), which generally speaking was con- 
structed for calculational approximations within the limits 1.0 ~ F+ ! 1.4 [2]. 
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The oscillation amplitude a of the wave drag is shown in Fig. 3. Here the difference 
between the two methods for varying F h (by velocity or depth) is insignificant and according 
to Fig. 2, mainly consists of the fact that curve 2 extends to higher values of F for which 
a2(F) approaches a constant value as F+ is approached. With decreasing F, curves 1 and 2 
rapidly fall to zero, thereby determining the lower boundary F_ of the interval for F h for 
the phenomenon as being in the interval [0.7; 0.8]. 

It was noted in [4] that for F h < 0.8, the oscillation amplitude of the wave drag is 
very small compared to <r>, which is in good agreement with the results given here. How- 
ever, significantly lower value for F_ (F_ = 0.2) was given as the lower boundary. The dif- 
ference can be explained by the fact that the value given was obtained by measuring the am- 
plitude of r(t) at small t. Due to marked damping of the oscillations in r(t), observed for 
F h < 1 and also noted in [4], this measured value significantly exceeds the amplitude of 
r(t) at large t, i.e., the value of a [function v(t) is the purely periodic part of the wave 
drag, which damps the part contained in r0(t)]. 

Figure 4, which shows the mean value <r> of the wave drag quantitatively reduces to 
Fig. 2. Here the maximum <r>2(F) is 0.324 at F = 1.21. Curve 4 is constructed according 
to the results from [4], which uses method 4 for varying the governing parameters. As be- 
fore, there is good qualitative agreement between curves 1 and 4 with a small quantitative 
discrepancy caused by the difference in the values of f. 

Figure 5 shows the maximum value rma x for the wave drag. This also can be considered 
as analogous to Fig. 3. However, note that in the case of variation of fluid depth, rmax(F) 
has a maximum of 0.791 at the point F = 1.66. 

3. Conclusions. These computational results augment significantly existing data on 
the question of the dependence of wave drag (and soliton generation as a whole) on external 
conditions. In particular the variation of fluid depth, which is undoubtedly of interest, 
has been examined here. The existence of different critical values for the depth hi, h2, 
and h 3 at which the corresponding frequencies of soliton generation and the mean and maximum 
values (in time) of the wave drag are maximal has been established. Thus, for a pressure 

region with parameters c, 3, and f related by c = v~, f = 0.2 ~2, we have h i = 0.557 

(maxm(F) = 0.263/4, h 2 = 0.684 ~ (max<r>(F) = 0.324), h s = 0.363 ~ (max rmax(F) = 0.791). 

It is known that soliton generation is observed only in a fairly narrow interval of 
Froude numbers which contains unity. With decreasing Fh, the process no longer occurs, be- 
cause the amplitude of the solitons being formed tends to zero. On the other hand the pro- 
cess comes to a stop for increasing F h because of unbounded growth in the period of genera- 
tion. In this case, as shown by the calculations, the upper boundary of the interval of 
admissible F h depends on other similarity numbers (3 and f) and can exceed significantly 
the limiting value of the propagation velocity of nonlinear steady waves. This can be inter- 
preted as favoring the existence of an unsteady process, or as evidence of the inadequacy of 
the model or more precisely, of its improper application at certain points (c, 3, f) in the 
governing parameter space. 

Indeed, condition (1.3), which is sufficient for the validity of the Boussinesq approx- 
imation, was not always satisfied in the calculations. Thus ~ > 1 for F > 1.].3 in the case 
of variation of c and also for F > 1.08 when h is varied. The applicability of the model 
when condition (1.3) is not met can be judged by comparison with experiment [4] and with 
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calculations using a more general model of potential flow of an ideal fluid [5, 6]. In do- 
ing this, some discrepancy of quantitative results was also observed, which grows with in- 
creasing power of the source of disturbance. However, this does not cause any qualitative 
disparity in the results (the value of ~ in this case reaches 0.7). Note also that within 
the limits of another approximate model (the Green-Hardy model), soliton generation is com- 
puted right up to F h = 1.4 [2]; no reason being noted for cessation of generation for F h > 
1.4. 

Thus, it would seem that the possibility of generating solitons with amplitudes and 
velocities markedly exceeding the limiting values of these parameters for steady waves is ex- 
plained not so much by the weak nonlinearity of the model being used as by the nature of the 
phenomenon, to wit, the presence of a forcing term which significantly reduces the degrees 
of freedom of the resultant solitons. However, one can probably expect some reduction in 
the upper boundary of attainable values for F h for the more general models, due to the loss 
of stability of large-amplitude waves (the development of wave instability with increasing 
power of the source of disturbance has been noted in experiments [4] and was observed by the 
author while doing numerical calculations of the problem that uses a potential model [5, 6]). 
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INFLUENCE OF THE OUTER FEEDBACK LOOP PARAMETERS ON THE FREE OSCILLATIONS 

OF THE FLOW OF AN UNDEREXPANDED JET PAST A FINITE OBSTACLE 

S. G. Mironov UDC 534.2:532 

The oscillation interaction of supersonic gas jets with obstacles was studied at the 
end of the 1920s [i] and has found broad application. However, the problem of the mechanism 
supporting the oscillations remains obscure. Virtually all hypotheses which purport to ex- 
plain this phenomenon are based on channels of direct and feedback coupling of the freely 
oscillating jet-obstacle system. These hypotheses can be divided into two basic groups: 
feedback is accomplished by waves in the shock layer between the obstacle and the central 
shock wave [2-4]; or feedback is accomplished by sound waves which propagate in the median 
surrounding the jet [5]. These models with equal plausibility describe the motion of the 
flow elements as observed in shadowgraphs, and they determine the pulsation frequency with 
reasonable accuracy. However, they do not permit determination of the region in which oscil- 
lations take place; nor do they explain the jump in frequencies. An attempt was made in [6] 
to work with both models and to find their regions of applicability. On the basis of a 
schlieren analysis of the interaction of a weakly underexpanded jet with an obstacle, it 
was shown that outer feedback dominates when the obstacle diameter d o exceeds the diameter 
of the exit nozzle cross section d a by a factor of four or more (do/d a > 4); on the other 
hand, inner feedback dominates when do/d a < 2: the physical meaning of this criterion has 
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